UNITED STATES PATENT OFFICE.

THOMAS A. EDISON, OF LLEWELLYN PARK, ORANGE, NEW JERSEY,
ASSIGNOR TO NEW JERSEY PATENT COMPANY, OF WEST ORANGE,
NEW JERSEY, A CORPORATION OF NEW JERSEY.

PHONOGRAPH RECORD OR BLANK.


Original application filed February 11, 1903, Serial No. 142,928.

To all whom it may concern:

Be it known that I, THOMAS A. EDISON, a citizen of the United States, residing at
Llewellyn Park, Orange, in the county, of
Essex, and State of New Jersey, have invented certain new and useful Improvements
in Phonograph Records or Blanks, of which the following is a description.

This application is a division of an application filed February 11, 1903, Serial No.
142,928.

The object of my invention is the production of a phonograph-blank suitable for receiv-
ing a cut record corresponding accurately to sound-waves and free from extraneous
surface vibrations or distortions, so that no sound will be reproduced other than that 
representative of the true record. When a matrix or mold is used so as to faithfully
imitate such a matrix as I shall describe, the resulting duplicates obtained from the ma-
trix or mold by well-known processes are superior to records as now made, whether
original or duplicate, in a number of respects, which will be pointed out.

I find that in order to produce an absolutely perfect master from which a corre-
sponding matrix or mold can be subsequently made it is necessary to employ a ma-
terial or substance which is perfectly amorphous and without crystallization, that is
uniform in structure, at least for a sufficient depth within its surface to receive the
record, that has sufficient adhesion to permit a substantially continuous shaving to be cut
by the recording device, and that, finally, is of such a character as to be readily cut by
the recorder in order that the latter may form a perfectly smooth record, which while
representative of the true vibrations shall not possess superfluous surface vibrations
at the present time and with present materials produce scratching and other extraneous
sounds. When a material of this character is employed from which to construct the
master, I find that owing to its relatively soft character much less power is
required to cut it, so that all of the sound-vibrations will be recorded, even those rep-
resenting the very weak overtones of musical instruments; also, that the depth of the
record can be considerably increased, so as to thereby permit very loud sounds to be re-
corded without danger of the recorder vibrating clear of the surface, and, finally, that
55 a perfectly smooth record will be cut, even when very deep, with a substantially con-
tinuous chip, so as to entirely eliminate the scratchy sounds now due to the mere cutting
of the present material.

Preferably the invention consists in the employment, for the manufacture of the master,
of a neutral or nearly neutral soap soluble in alcohol and in hot water, and by preference
a soda soap and in the manipulation of this material to put it into the required form for
use in receiving a sound-record.

Reference is hereby made to the accompanying drawing, which illustrates diagram-
atically a master-record embodying one form of my invention.

In carrying the invention into effect I prefer to proceed as follows: Any of the finer
qualities of the soaps of commerce are cut in thin slices and, if necessary, are dried. Some
of these soaps—like Pears’ soap, for example—contain so little water that a special
drying is not necessary. The dry sliced material is now dissolved in ethyl alcohol main-
tained in a heated state by hot water—in a water-jacket, for instance—until the alcohol
is nearly saturated. A small quantity of water is added to clear the solution, which is
then filtered through a fine cloth in a funnel heated by a surrounding water-jacket. The
filtered solution is now heated in any suitable way until enough alcohol is evaporated to re-
sult in the production of a viscous mass capable of being cast into a blank by any of the
well-known casting processes now used for manufacturing phonograph-blanks. These
blanks may be either disk-like or cylindrical or of other form, according to the
particular kind of records which are to be made. The blank after it has become cool is
hard and firm enough to maintain its shape under normal conditions, its hardness de-
pending upon the amount of water and alcohol remaining in the material. Blanks made
in this way are now turned roughly to their approximate desired size and are allowed
season in a warm room for several days, during which they become gradually harder, due
to further loss of alcohol and water. The blanks are then ready for use after they have
been turned to the proper size for receiving
the record. Phonograph-blanks made in this way are transparent, perfectly amorphous, non-crystalline, and uniform in structure throughout, and they are capable of receiving a record of sound-vibrations whose track is perfectly polished. In these respects blanks or records made as I now suggest are distinguished from blanks or records made of the recording material now universally used, since the latter is not soluble in water, is very hard and semicrystalline, and results in the formation of a record which on reproduction produces scratchy and extraneous sounds in addition to those constituting the record itself.

Phonograph-blanks produced as I suggest are now used for receiving a sound-recording made in any suitable sound-recording machine, either of the phonograph type, in which a record of varying depth is formed, or of the gramophone type, in which a simious record of substantially uniform depth is formed. In the making of original records at the present time, whether for use as masters or not, the ordinary wax-like material is quite friable, so that the material is removed by the recorder in the form of short chips. The removal of the material in this way makes the record-groove quite rough, and this roughness of the record-groove is material, increased if the recorder cuts too deeply into the material. Consequently at the present time very loud records are more scratchy than softer ones. With my improved recording material as used by me, owing to its relative softness, the recorder cuts out a practically continuous shaving and makes a perfectly smooth track, and this is true even if the cut of the record is quite deep. Consequently by the use of the new material I am enabled to employ recorders having a diameter as low as .015 of an inch, whereby I am enabled with no increase in the power used to cut a record at least twice as deep as is possible with the recorders of standard size—namely, about .040 of an inch in diameter.

The new material I find is too soft to permit of direct reproduction by a reproducing device, since the small waves will be immediately obliterated by the reproducer. I therefore use a record obtained as described as a master, from which to construct a master or mold. To this end therefore I first provide the master with a conducting coating, preferably by a process of vacuum deposit, as described in my Patent No. 713,863, dated November 18, 1902. The coating thus formed is extremely thin and is so uniform that it follows all the variations of the record, however minute. Besides this, a conducting coating if applied in this way is so smooth and polished that when incorporated in the record-surface of the matrix or mold it will not of itself produce any extraneous sound. Having coated the master with a conducting-film, I now electroplate copper thereon until a layer of the desired thickness is secured, after which the original master is removed, either by shrinking or dissolving it out. The matrix or mold is now preferably backed up by a protecting-shell and is used for the production of duplicates in any well-known way, formed of the usual hard wax-like materials. For instance, the matrix or mold can be employed for making duplicates by an expanding process, as specifically described in my Patent No. 713,209, dated November 11, 1902, in which a blank is engaged loosely with a matrix and expanded by heat and pressure to take an impression therefrom, after which the duplicates are contracted radially, so as to clear the record on the matrix, from which they are then removed, or in connection with a casting process, as described in my Patent No. 667,662, dated February 5, 1901, in which molten wax-like material is introduced into a mold and allowed to set therein, after which the resulting duplicate is contracted, so as to clear the record on the mold, from which it is then removed, or in connection with any other desired process by which a duplicate record can be obtained from a matrix or mold. In any event the duplicates so produced will be superior to those made at the present time from the matrices or molds secured from masters composed of the usual hard wax-like material in the following respects: First, owing to the amorphous, non-crystalline and uniform character of the master the record formed therein will be free from extraneous sounds, and this will also be true of the resulting duplicates; second, owing to the fact that the master is formed of comparatively soft material the record made therein is more nearly representative of the sound-vibrations than is possible with harder materials, so that the resulting duplicates will more closely resemble the original sounds, including even the finer overtones of musical instruments; third, owing to the ease with which the matrix can be employed in addition to soap, by which harder or softer blanks can be obtained.

Having now described my invention, what I claim as new, and desire to secure by Letters Patent, is as follows:

1. A phonograph record or blank formed of a perfectly amorphous, solidified, water-soluble soap, substantially as set forth.

2. A master for use in the production of 130
matrices or molds, comprising a suitable tablet formed of a perfectly amorphous, water-soluble soap and carrying a smooth polished sound-record groove free from extraneous variations, substantially as set forth.

3. A phonograph record or blank composed of a soap hard enough to receive a polished surface from a cutting tool or stylus, but not hard enough to be capable of reproduction by direct engagement of a reproducing stylus, substantially as set forth.

This specification signed and witnessed this 28th day of April, 1905.

THOS. A. EDISON.

Witnesses:

FRANK L. DYER,

ANNA R. KLEMM.