Silicium on the other hand is very low resistance & would have to be arranged thus

(Fig 2 TAE)

I think powdered silicium mixed with lime or other very infusible non conductor or semi conductor would be good

T A Edison

Chas Batchelor

J Kruesi


1. See headnote, p. 540.
2. Stephen Field later testified that he had seen circuit arrangements like this in September, with a bichromate battery instead of a magneto machine. P. 183, Sawyer and Man v. Edison (TAEM 46:244).
3. That is, in parallel. Figure labels are "a," "a," "a," "a" (all apparently added later by Edison), and "magneto."
4. That is, in series. Figure labels are "b," "b," and "b" (all apparently added later by Edison), and "magneto."

Technical Note: Phonograph

[Menlo Park] November 1 1877

Phonograph

Paper soft & coated heavily with a compound of Beeswax & Parafin, or other soft substance

X Reed diaphragm backed with rubber.

T A Edison

J Kruesi

Chas Batchelor.

G E Carman

M N Force

October–December 1877
1. The clockwork at left, which pulls the paper past the phonograph mouthpiece, is similar to those used by Edison for automatic and domestic telegraphy. See, e.g., Docs. 458 and 615.

---

Spkg Telgh
Faraday Page 27 Vol II Researches

Good Conductors = Galena — Sulphuret of iron = Arsenical pyrites = native sulphuret Copper & iron = native gray artificial sulphuret of iron = Copper Sulphuret of Bismuth Iron & Copper — globules of oxide of burnt iron, oxide of iron by heat or scale iron = Conduct current single thermopile well = native4 Peroxide of Manganese & peroxide of lead conduct moderately well.

A solution of sulphuret of Potassium is a remarkably good conductor also, greenish nitrous acid = Sulpt Pot. has as2 action on the metals such as iron & platinum together

Idea =

disk of Lampblack1 thinnest tin foil laid on it talk against it or coat it with thick gold foil continuing foil on to paper X. the foil will adhere then varnish foil & talk against it

T A Edison

---

1. Edison's notes (to "... platinum together") are drawn nearly verbatim from Faraday 1965, 2:27–28. These pages are concerned with the conductivity of various electrolytes.

2. This exhibit was made from a tracing. The original probably said "no action" as does Faraday 1965 (28).