I give these figures so that you may see how statement will be when you receive it; these are as near as I can judge in many places in statement, when the expense of building road is made it should be tearing up and removing old road which I did the most off W


1. Marontate was a Canadian-born lumber dealer who settled in Port Huron, where he managed the firm of William Sanborn & Co. He later formed a lumber partnership with W. B. and J. Hibbard. History of St. Clair County, Michigan 1883, 584.


---

To James MacKenzie

Dear Mac'

The Phonograph is a perfect success; and soon as I have cheapened the mechanism down a little, I want you to take charge of the whole business for these €[—] & all other Countries; But you must think it over well and be ready as we must move quick. The new telephones are also a big success; I Write me — See Scientific American of Dec 22 \(^1\) you will get it. next Saturday or Monday —

Edison


1. Doc. 1150.
2. That is, on 15 or 17 December.

---

The Talking Phonograph.

Mr. Thomas A. Edison recently came into this office, placed a little machine on our desk, turned a crank, and the machine inquired as to our health, asked how we liked the phonograph, informed us that it was very well, and bid us a cordial good night. These remarks were not only perfectly audible to ourselves, but to a dozen or more persons gathered around, and they were produced by the aid of no other mechanism than the simple little contrivance explained and illustrated below.

October-December 1877
The principle on which the machine operates we recently explained quite fully in announcing the discovery. There is, first, a mouth piece, A, Fig. 1, across the inner orifice of which is a metal diaphragm, and to the center of this diaphragm is attached a point, also of metal. B is a brass cylinder supported on a shaft which is screw-threaded and turns in a nut for a bearing, so that when the cylinder is caused to revolve by the crank, C, it also has a horizontal travel in front of the mouthpiece, A. It will be clear that the point on the metal diaphragm must, therefore, describe a spiral trace over the surface of the cylinder. On the latter is cut a spiral groove of like pitch to that on the shaft, and around the cylinder is attached a strip of tinfoil. When sounds are uttered in the mouthpiece, A, the diaphragm is caused to vibrate and the point thereon is caused to make contacts with the tinfoil at the portion where the latter crosses the spiral groove. Hence, the foil, not being there backed by the solid metal of the cylinder, becomes indented, and these indentations are necessarily an exact record of the sounds which produced them.

It might be said that at this point the machine has already become a complete phonograph or sound writer, but it yet remains to translate the remarks made. It should be remembered that the Marey and Rosapelly, the Scott, or the Barlow apparatus, which we recently described, proceed no further than this. Each has its own system of calligraphy, and after it has inscribed its peculiar sinuous lines it is still necessary to
decipher them. Perhaps the best device of this kind ever con-
trived was the preparation of the human ear made by Dr. Clar-
ence J. Blake, of Boston, for Professor Bell, the inventor of the
telephone. This was simply the ear from an actual subject,
suitably mounted and having attached to its drum a straw,
which made traces on a blackened rotating cylinder. The
difference in the traces of the sounds uttered in the ear was
very clearly shown. Now there is no doubt that by practice,
and the aid of a magnifier, it would be possible to read phonet-
ically Mr. Edison’s record of dots and dashes, but he saves us
that trouble by literally making it read itself. The distinction
is the same as if, instead of perusing a book ourselves, we drop
it into a machine, set the latter in motion, and behold! the
voice of the author is heard repeating his own composition.
The reading mechanism is nothing but another diaphragm
held in the tube, D, on the opposite side of the machine, and
a point of metal which is held against the tinfoil on the cylin-
der by a delicate spring. It makes no difference as to the vibra-
tions produced, whether a nail moves over a file or a file moves
over a nail, and in the present instance it is the file or indented
foil strip which moves, and the metal point is caused to vibrate
as it is affected by the passage of the indentations. The vibra-
tions, however, of this point must be precisely the same as
those of the other point which made the indentations, and
these vibrations, transmitted to a second membrane, must
cause the latter to vibrate similar to the first membrane, and
the result is a synthesis of the sounds which, in the beginning,
we saw, as it were, analyzed.

Fig. 2

In order to exhibit to the reader the writing of the machine
which is thus automatically read, we have had a cast of a por-
tion of the indented foil made, and from this the dots and lines
in Fig. 2 are printed in of course absolute facsimile, excepting
that they are level instead of being raised above or sunk beneath the surface. This is a part of the sentences, "How do you do?" and "How do you like the phonograph?" It is a little curious that the machine pronounces its own name with especial clearness. The crank handle shown in our perspective illustration of the device does not rightly belong to it, and was attached by Mr. Edison in order to facilitate its exhibition to us.

In order that the machine may be able exactly to reproduce given sounds, it is necessary, first, that these sounds should be analyzed into vibrations, and these registered accurately in the manner described; and second, that their reproduction should be accomplished in the same period of time in which they were made, for evidently this element of time is an important factor in the quality and nature of the tones. A sound which is composed of a certain number of vibrations per second is an octave above a sound which registers only half that number of vibrations in the same period. Consequently if the cylinder be rotated at a given speed while registering certain tones, it is necessary that it should be turned at precisely that same speed while reproducing them, else the tones will be expressed in entirely different notes of the scale, higher or lower than the normal note as the cylinder is turned faster or slower.

To attain this result there must be a way of driving the cylinder, while delivering the sound or speaking, at exactly the same rate as it ran while the sounds were being recorded, and this is perhaps best done by well regulated clockwork. It should be understood that the machine illustrated is but an experimental form, and combines in itself two separate devices—the phonograph or recording apparatus, which produces the indented slip, and the receiving or talking contrivance which reads it. Thus in use the first machine would produce a slip, and this would for example be sent by mail elsewhere, together in all cases with information of the velocity of rotation of the cylinder. The recipient would then set the cylinder of his reading apparatus to rotate at precisely the same speed, and in this way he would hear the tones as they were uttered. Differences in velocity of rotation within moderate limits would by no means render the machine's talking indistinguishable, but it would have the curious effect of possibly converting the high voice of a child into the deep bass of a man, or vice versa.

No matter how familiar a person may be with modern machinery and its wonderful performances, or how clear in his

October–December 1877

673
mind the principle underlying this strange device may be, it is impossible to listen to the mechanical speech without his experiencing the idea that his senses are deceiving him. We have heard other talking machines. The Faber apparatus for example is a large affair as big as a parlor organ. It has a key board, rubber larynx and lips, and an immense amount of ingenious mechanism which combines to produce something like articulation in a single monotonous organ note. But here is a little affair of a few pieces of metal, set up roughly on an iron stand about a foot square, that talks in such a way, that, even if in its present imperfect form many words are not clearly distinguishable, there can be no doubt but that the inflections are those of nothing else than the human voice.

We have already pointed out the startling possibility of the voices of the dead being reheard through this device, and there is no doubt but that its capabilities are fully equal to other results just as astonishing. When it becomes possible as it doubtless will, to magnify the sound, the voices of such singers as Parepa and Titiens will not die with them, but will remain as long as the metal in which they may be embodied will last. The witness in court will find his own testimony repeated by machine confronting him on cross-examination—the testator will repeat his last will and testament into the machine so that it will be reproduced in a way that will leave no question as to his devising capacity or sanity. It is already possible by ingenious optical contrivances to throw stereoscopic photographs of people on screens in full view of an audience. Add the talking phonograph to counterfeit their voices, and it will be difficult to carry the illusion of real presence much further.


1. The date on this issue of the Scientific American was 22 December, but issues were “for” the weeks ending with their listed dates and were apparently available before the start of the week (see Doc. 1102 n. 1). This issue had been ready for printing on 7 December but was delayed by a day to prepare this article; Edison may well have had a copy by 12 December (see Docs. 1147 and 1149).

2. See Doc. 1102. The publication of these two accounts led to considerable legal difficulties for Edison when he tried to obtain patents in some other countries. See, e.g., Lemuel Serrell to TAE, 16 Dec. 1878, DF (TAEM 18:845).

3. The apparatus was described in an article titled “Speech Automatically Transmitted in Shorthand by the Telegraph.” Sci. Am. (n.s.) 37 (1877): 273.

5. Euphrosyne Parepa-Rosa and Teresa Caroline Johanna Titiens were both operatic sopranos. DNB, s.vv. “Parepa-Rosa, Euphrosyne”; “Titiens, Teresa Caroline Johanna.”

N.Y. Dec 16th 1877

Dear Sir,

I send herewith pages of old edition of Appleton’s Dictionary on Telegraphy. It is desirable to use just as much of this as you possibly can.

There is no need of retaining portions of less than half a page.

Larger pieces (the matter being stereotyped) can be reused at considerable saving of time.

I send pages in duplicate so that you can easily incorporate them in your manuscript.¹

Will you please return me the Electricity article at your earliest possible moment?

My printer is now waiting for copy and I can give him none until that article is ready. Address me in future as below²

Yours &c

Park Benjamin³ per W.E.B.⁴

L, NJWOE, DF (TAEM 14:250).

¹. Edison was writing the section on telegraphy for Appleton’s Cyclopaedia of Applied Mechanics, which was edited by Park Benjamin but not published until 1880. A draft in Edison’s hand, docketed “Copy of Article for Park Benjamin 1878,” is in DF (TAEM 17:33). On 26 March 1878 Benjamin wrote Edison to inform him that he needed the article by 6 April and Edison replied that he would try to send it by then (Benjamin to TAE, DF [TAEM 17:32]). The article as published follows Edison’s manuscript very closely. However, sections on Cowper’s writing telegraph and on telegraph construction, as well as a bibliography, were apparently added by Benjamin. As a result the article is signed “T.A.E. (in part).” Edison contributed a description of his inventions for the article on telephony written by Benjamin, and he may have contributed to the sections on electricity and the phonograph, also written by Benjamin (Benjamin to TAE, 4 Jan. 1878, DF [TAEM 17:2]).

². 107 East Thirty-Fifth St., N.Y.

³. Park Benjamin, associate editor of Scientific American, was an author and patent attorney who wrote extensively on technical and scientific subjects. DAB, s.v. “Benjamin, Park.”

⁴. Unidentified.